As we saw in last week’s newsletter, grating structures with various shapes are often an essential part of lightguide-based display systems for augmented and mixed reality applications. The complexity of the gratings and the manifold roles they usually play in these setups require a thorough analysis of their behavior, while the small feature size means a rigorous method is necessary to perform said analysis accurately. The fast physical optics modeling and design software VirtualLab Fusion puts several tools at your disposal to make this task easier and more user-friendly.
This time, we want to highlight the Grating Order Analyzer, which uses the rigorous Fourier Modal Method/Rigorous Coupled Wave Analysis (FMM/RCWA) for grating characterization and illustrate its application in the case of a slanted grating for lightguide incoupling.
Analysis of Slanted Gratings for Lightguide Coupling
Different slanted grating geometries are selected from literature, with varying slant angle, fill factor, and modulation depth, and the diffraction efficiencies are calculated with the Fourier Modal Method (FMM).
If you are not interested in receiving any current information from LightTrans, please click here
Subscribe to our newsletter and get our weekly information about the latest technical updates and never miss an event again.
Newsletter/News LightTrans, VirtualLab Fusion, Optical Design Software, Simulation, Light Guide, Fourier Modal Method, diffracration, grating, FMM, RCWA, free parameters, slanted gratings This time, we want to highlight the Grating Order Analyzer, which uses the rigorous Fourier Modal Method/Rigorous Coupled Wave Analysis (FMM/RCWA) for grating characterization and illustrate its application in the case of a slanted grating for lightguide incoupling.