

Design & Analysis of Diffractive Splitter Generating a Light Mark

Abstract

Separate (focused) beams or light points are of interest for a wide range of applications, whether for manufacturing processes, for special fiber coupling, for face recognition systems or light marker generation. Each of these applications has different and very specific requirements. VirtualLab Fusion offers you a powerful yet easy-to-use software package to design, simulate and analyze such beam splitter systems. Using a simple diffractive beam splitter system to generate a paraxial light mark, we will present a typical workflow and describe and demonstrate various design, modeling, simulation and analysis aspects that maybe relevant for such tasks.

Task

diffractive beam splitting element

- type: binary
- aperture shape: square
- side length L_{DOE} : 3 mm
- thickness: 1mm
- substrate material: fused silica
- structure on 2nd surface
- further requirements on later slide

- shape: light mark with center cross and corner markings (given by bitmap file)
- distance of neighbor spot positions
 Δp: 500 μm
- side length *L*_{pattern}: 15mm
- 1/e² diameter of spots: 170 µm (already given by focusing system)

Requirements

Geometry

- beam splitting element with binary structure (e.g. to reduce the cost)
- smallest feature size: 2.5µm (to ensure that the intended structure design method is within its validity range(*))
- highest positioning accuracy: 10nm (possible capabilities of manufacturer)
- manufacturing data of mask via bitmap file

Merit Functions()**

The following conditions should be maintained considering an etching depth tolerance of $\pm 2\%$:

- conversion efficiency (CE) > 60%
- maximum relative(***) intensity of stray light (SL) < 5%
- uniformity error (UE) < 5%

(*) For the conversion from the functional design data to a structured data the conventional thin element approximation (TEA) is applied.

*) The formulas can be found in the help/manual of VirtualLab Fusion.

(***) "relative" refers to the average value of the desired working orders' efficiencies.

Result Preview

Start (Session Editor)

Presenting Preconfigured System and Design Document

📳 * 23: Regular Beam Splitter Session Editor	Rə 24: Optical Setup Editor #24 (Regular Array Beam Splitting System)	
	Press Path Celestors Analyzers Logging	
Next Design Steps:	Start Element Target Element	Linkage
the optimization of the diffractive optical element.	Index 25: Optical Setup View #24 (Regular Array Beam Splitting System)	
2. The optimization will start with a random dimactive optical element transmission. The optimization result will depend on the initial random transmission Repeat the optimization with different initial random transmissions and keep the best result.	Filter by X	
 The 'Goal Efficiency' value on the 'Specification' page of the Optimization Document can be used to find a compromise between efficiency and uniformity 	2 Gaussian Wave Aperture Beam Splitter Ideal Lens	Camera Detector
error. Larger values will result in higher efficiency and lower uniformity. Change the goal efficiency value and go back to 1.	Detectors Analyzers O D	600 600 F
4. Try to increase the diameter factor of the output field to increase the area used for stray light. This will help often to reach lower uniformity errors and a lower maximum relative stray light intensity.	Coordinate Break - Comera Detector University Detector X:0 mm X:0 mm X:0 mm X:0 mm X:0 mm	X: 0 mm
	Z: 0 mm Z: 100 mm	2:100 mm
		26: Iterative Fourier Transform Algorithm Optimization
On the last page of the		Design Method Iterative Fourier Transform Algorithm Approach V Transmission Set Show
session editor, you will		Generate Initial Transmission Method Backward Propagated Desired Output Field
be givensome tinsfor		Signal Phase Synthesis 25 Soft Introduction of Transmission Constraint
the next stens		SNR Optimization for Phase-Only Omit Final Transmission Projection
the flext steps.		Soft Quantization 100 Create Transmission Animation Options
		SNR Optimization for Quantized Create Output Field Animation Options
By clicking "Finish" in the sess	sion editor. VLF presents the	Logging
		Configure
user		Chow Diagram
 a preset optical setup (OS) 		חופוניבוס איכוב
• a preset IFTA optimization	document	
		Preserve Table
for the actual design and simu	lation.	Progress in current design step Start Design

First Impression: Light Mark & Its Merit Functions

Design Selection

multiple designs and tolerance checks with IFTA document

Multiple Run & Best Result Candidates

VLF offers you the *Multiple Run* document for automatic generation & evaluation of many designs with preset result filters.

For this use case the following filters were used:

- Conversion Efficiency (CE) > 60%
- Uniformity Error (UE) < 5%
- Maximum Relative Intensity of Stray Light (SL) < 5%

The multiple run document saves the CA2 files of the designed transmission functions together with an overview CSV file. Selected transmission functions can be set in the IFTA document for some tolerance evaluations.

Aultiple Runs of IFTA opti	mization					×
Merit Functions						
Calculate		Condition Type	Minimum		Maximum	
Window Efficiency						
Conversion Efficiency		Greater Thar $ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $		60 %		
Signal-To-Noise Rati	0					
Uniformity Error		Less Than \sim			5 %	
Relative Zeroth Order	r Intensity					
Zeroth Order Efficient	cy					
of Stray Light	tensity	Less Than \sim			5 %	
Saving						
Result File Name	BinaryDiff	ractiveBeamSplitter4	LightMark_			
Save Results to						
	-					
Save and Log	Only Re	esults Fulfilling All Co	onditions			
	All Res	ults				
Number of Runs	1(00 📥				
Progress						
			Start	C	lose Help	

Perform Tolerance Evaluations for Other Design Candidates

- After the transfer file of a candidate has been set on the IFTA Design tab, the robustness can be checked via the *Analysis* tab.
- The phase values are scaled from 97% to 103% (corresponding to a height deviation of $\pm 3\%$).

处 * 18: IFTA						×
Specification Design An	alysis	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>`</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	
Scan Scale Error Range Modified Scale Factor	From To	om 0.9	7 Number of S 3 Create Outpu	teps	101 Options	
Linear 1.0264 1.027 1.0276 1.0282	ConvEff [%] 63.030673354108991 63.033146598477664 63.035653034602412 63.0381913768597	UnifErr [%] 6.6133737420546357 6.9077428010704836 7.2068460415552025 7.51057663527085	StrayLight [%] 4.978698206829808 4.9781090630667411 4.97750851712136 4.9768966742333838	^	Recalculate Show Diagram	Click Click

Tolerance Checks & Selection of Design Candidate

The adjacent figures show the possible merit functions in case of an inaccuracy due to an etching depth tolerance $(\pm 2\% \text{ range is marked in red})$.

 The Conversion Efficiency (CE) and the Maximum Stray Light (SL) do not vary significantly. They even get better for deviating depths.

But the Uniformity Error (UE) does change for the worse!

Candidate #1 & #2 keep a Uniformity Error below 5%. Candidate #1 plays it safer, thus for the following simulations candidate #1 is chosen.

System Simulation

initial adjustments & first impression

Initial Optical Setup

Apart from the IFTA document, the session editor has prepared a preconfigured system, the optical setup (OS).

VirtualLab Fusion (VLF) allows to balance between speed and accuracy:

- For this scenario, the general profile simulation engine automatically selects the most accurate propagation method.
- However, we adjust the settings to use a generalized Debye integral method that provides a very good
 approximation result in less than 1/3 of the simulation time.

🗟 5: Optical Setup View #	4 (System)	
Filter by × Light Sources Components Ideal Components Detectors Analyzers Coordinate Break Camera Detector Universal Detector	Gaussian Wave Aperture Beam Splitter Id 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	eal Lens Camera Detector
		Accuracy Speed Balance (Propgation Method) For more info follow this link into the appendix.

Result from IFTA vs System Simulation

system result display with Gaussian beams per diffraction order

Structure Design

conversion of designed phase to height distribution

Structure Design

Image: 28: Transmission (27:) File Data View Image: 27:0	✓ Start	Harmonic Field lations Detectors Design	In the edit dialog for configurations are a	r the structure design, the following applied: • transparent plate (no mirror)
u u	-1.57 -3.14 :3 (93; 93)	Structure Design for Phase-Only Transmiss Target Optical Setup Surface Param Height Profile Unwrapping Unwrapping Mode None Modulo Enforce Quantization Number per 2 pi Height Modulation Depth per 2 pi Total Modulation Depth Interpolation of Sampled Surface Assume Smooth Height Profile (Cu Pixelated Height Profile (Nearest N Handle Fresnel Zone Transitions (F	asions Using Thin Element Approximation × heters 1 × 2 pi of Quantization Levels 2 Phase Modulation 1.1544 µm 577.21 nm ubic 8 Point Interpolation) Neighbor Interpolation) Fresnel Interpolation) Fresnel Interpolation)	 thickness of substrate: 1 mm substrate material: fused silica embedding material: air design wavelength: 532 nm enforce quantization: 2 levels pixelated height profile Diffractive Optical Element (DOE) (for Profile: General) I I I I I I I I I I I I I I I I I I I

Integrate Real Splitter Model to System

Structure Representation

for clearer view of height structure, the modulation depth was scaled by a factor of 5

Simulation Difference for Phase vs Structure: Fresnel Effects

In the simulation using real structures and materials effects like Fresnel reflection can be considered.

- Adjacent figures show, that the maximum in the result based on the phase function (0.491(V/m)²) is higher than the result's maximum from the structure simulation (0.461(V/m)²).
- Typically, you would apply anti reflection (AR) coatings to reduce this effect.
- By applying the AR coating BBCoat04_440-710nm from VLF's catalog, the reflection losses are gone.

Final System Simulations

pixelation factor and irradiance detection

Final Adjustments to the System

For more info follow this link into the appendix.

22

Irradiance Results from Simulation with Pixelation Factor of 5x5

Structure Export

generate data for manufacturer

Export of Fabrication Data

The export is initiated directly from the surface edit dialog via the *Tools* button.

The export dialog provides the user with various options.

VLF will always generate a summary file which contains all relevant description for the manufacturer.

Exported Data

title	Design & Analysis of Diffractive Splitter Generating a Light Mark
document code	DOE.0002
document version	3.0
required packages	Diffractive Optics
software version	2023.2 (2.30)
category	Application Use Case
further reading	

Appendix

Info & Adjustments of Initially Output Optical Setup

				5: Ontical Setun View #4 (System	n)					E	dit Camera Detec	tor			>
			Filte	r by X							1 a	Fourier Transforms	Sampling Gridded	Data Sampling Gridles	; Data
				Ideal Components Detectors Analyzers		Aperture	Beam Splitter	3	600	-2>	Coordinate	Type of Fourier Transform	Source to Detector	Component to Detector	
				Coordinate Break Camera Detector Universal Detector		Z: 0 mm	Z:0 mm	mm	Z: 250 mm		Systems	Forward FFT			
4: Optica	al Setup Editor #	#4 (System))					<u> </u>	- • ×			Forward SFT			
	Path		Detectors	📑 🔿 Analyzers	5	S Logging					Position /	Forward PFT		\checkmark	
		Sta	art Element			Target Element	L	inkage				Inverse FFT			
Index	Element N	Name	Ref. Type	Medium	Index	Element Name	Modeling Profile	On/Off	Color		<u>6</u>	Inverse SFT			
0	Gaussian Wav Aperture	ve	- 9 T 9	Standard Air in Homogen Standard Air in Homogen	1	Aperture Beam Splitter	General Profile General Profile	On On			Detector	Inverse PFT	\checkmark	\checkmark	
2	Beam Splitter	r	T 5	Standard Air in Homogen	3	Ideal Lens	General Profile	On				Automatic PFT Sele	ection Accuracy Leve	4	0 🔹
3	Ideal Lens		1	standard Air in Homogen							\mathcal{F} \mathcal{F}^{-1}	Resulting Pointw	ise Transformation	Index (PTI) Threshold	1
Tools	5 🎢 🗸	_	_			- 1 Simulation E	ngine Profile: General		✓ Go!		Free Space Propagation	Enforce PFT Beyond	1 10000 ² 9	Sampling Values?	Ves No
							Profile: Ray Results Profile: General Classic Field Tracing				······	PFT for Bijective Ma	apping Only?		🔾 Yes 💿 No

- 1. Currently the preset simulation engine is still "Classic Field Tracing (CFT)", but the newer General Profile option is already the better choice for most setups. Thus, the simulation engine is switched to *"Profile: General".*
- Furthermore, as this scenario can be assumed to be paraxial, where we do not expect distorted off-axis spots, and the light is propagated into a Fourier plane, we choose the Fourier transforms "pointwise" & "inverse integral"; this corresponds to the generalized Debye method. By default, the automatisms of VLF with version 2023.2 (build 2.30) are a bit stricter and would select a rigorous propagation method which would take about 3× longer, with similar result.

question of balance between speed and accuracy

Configuring of Radiometric Evaluation

- The camera detector outputs the components of the E field. Typically, one is interested in radiometric or photometric quantities.
- In the optical setup (OS) we have prepared two Universal Detectors for that purpose. One for the general pattern impression and one for a detail of it.
- Here we configure the detection of the radiometric quantity "Irradiance" which is derived from the Poynting vector.
- As a consequence all 6 EM field components have to be evaluated to calculate the Poynting vector and then the irradiance.
- For such a paraxial system, the summed squared amplitudes and the irradiance result are proportional.

Ex

 \checkmark

Components

Domain

Ev

 \checkmark

Space (x-Domain)

Ez

 $\overline{}$

Hx

 \sim

Hy

 \sim

Fourier (k-Domain)

Ηz

 \checkmark

Simulate Pixelated DOE

- The first system simulations neglected the pixelated nature of the phase or height distribution.
- By introducing a pixelation factor larger than 1×1 per we "tell" VLF to sample each phase (and structure) pixel (respectively) by multiple points.

 \times

Higher Sinc Orders Due to Structure Pixelation

Convergence Check for Pixelation Factor

The difference of the maximum value between the simulation with a pixelation factor of 5×5 and 9×9 is only 0.5%. It is a question of compromise between accuracy and calculation time.