

UseCase

Design & Analysis of System with Diffractive Light Diffuser Generating the LightTrans Logo

Abstract

Diffractive diffusers can be designed to create any pattern. Here we demonstrate some possibilities of VirtualLab Fusion to design, optimize, model and simulate such diffractive optical elements (DOE) and the whole system to project our company's logo high up on a building. There are different approaches for generating light patterns. With a coherent laser light and a diffractive diffuser element, good efficiencies and interesting light textures can be achieved, which will be shown. Task

logo is depicted a bit bigger.

Avoiding Possible Problems from 0th Order

For being able to block the 0th order, the diffractive diffuser will be designed such, that it generates an off-axis LightTrans logo.

Result Preview

(with indication of screen size)

Beam & Pattern Conditions → Design Target Pattern (DTP)

beam: size evaluation

pattern: import, preparations, predistortions, sampling considerations

Spot Sizes in 15m Distance

The diffuser element deflects the incident beam in such a way that the desired pattern is created. The resolution is determined by the size of the individual beam spot.

Via a simple optical setup, we ascertain the achievable spot diameters to be $\ge 5 \text{ mm}$.

At the same time, we can already recognize which beam waists do not yet have the target plane completely in their far field.

Information about the Design Target Pattern (DTP)

The iterative Fourier transform algorithm (IFTA) used for the design serves to optimize between the plane with the transmission function to be designed, which is illuminated by collimated light, and the associated target values of the deflected light directions in the k-domain.

For paraxial systems, the pattern in the k-domain is proportional to the pattern in the space domain parallel to the plane of the DOE.

For the design presented here, the pattern must therefore be defined in this parallel plane.

This geometrically distorted pattern can be easily created using another simple optical setup.

8m

Predistorted Pattern for Design

Via the optical setup below, one can easily calculate how any desired projected light shape on the intended screen will look like on a plane that is tilted parallel to the DOE.

These distorted patterns can be used for the design process.

For more info follow this link into the appendix.

Sampling & Test DTP

- Depending on the desired light impression, a suitable sampling of the pattern must be considered, as each pixel center of the DTP represents a target position of a beam deflected by the diffuser.
- Based on our experience and intentions for this scenario, a sampling distance of 5mm is selected.
- It is also often helpful to create test designs based on smaller parts of the complete sample.

Target Spot Diameter for Pattern with 5mm Sampling Distance

- In order to show different types of speckle patterns, the considered waist diameters will be in the range of [0.9; 2.0]mm.
- The associated target spot diameters are in the range of about [6.5; 13.9]mm.

Test Design

comparing of achievable light textures for decision on input beam diameter

Session Editor

IFTA: Design & Result of Test Pattern

* 10: Iterative Fourier Transform Algorithm Optimization Specification Design Analysis Design Method Iterative Fourier Transform Algorithm Appr Design Steps Number of Iterative	oach v Transmission Set Show	12: Transmission for Test DTP	Re Im
Generate Initial Transmission Signal Phase Synthesis 25 SIR Optimization for Phase-Only 50 Soft Quantization 100 SNR Optimization for Quantized 5000 Logging	Method Backward Propagated Desired Output Fielc Soft Introduction of Transmission Constraint Omit Final Transmission Projection Soft Introduction of Transmission Constraint Create Transmission Animation Options Create Output Field Animation Options Show Final Transmission and Output Field Enable Logging Configure Show Diagram	u 3.14 u 0 u -973.53 μm y 973.53 μm y -3.14 Jones Matrix Transmission Phase Zoom: 1.068 (261; 174)	A P A ² Data Quantity designed continuous phase-only transmission function
Progress in current design step	Preserve Table		

Pattern Texture/Impression → Selection of Illuminating Waist

The above results provide three representative impressions for different scenarios of target point overlap: (where a larger overlap leads to larger speckles with higher peaks)

- 1. standard overlap \rightarrow smallest speckles
- 2. less overlap \rightarrow interim appearance between diffuser and splitter

It is a matter of taste, which is the best solution.

For this use case the standard overlap is chosen, yielding an organic, flamy texture.

Full Design, Merit Functions & Simulation

stray light, efficiencies & full output field impressions

Optimization Region

The illustrations opposite show various areas of interest and their purpose.

- To improve the contrast and thus reduce the scattered light around the desired pattern, an optimization area is introduced in the size of the projection surface (black rectangle).
- Later, we will use an aperture (green rectangle) that only transmits the light generated by the pattern and blocks the stray light from the surroundings.

^{1 aperture}

Designs of Different Modes

- For comparison purposes, we carry out designs of elements with continuous phase values, 8 and 4 phase stages.
- As optimization region either the LightTrans logo pattern itself or an expanded area connected with the projection area is used.

20: Optimization Region = LightTrans Logo

 \sim

. -

7

Ņ

[<u>m]</u> ∧

2D Region (Sampled)

LIGHTTRANS

0

X [m]

1

2

0

-1

-2

	19: IFTA		
	Specification Design Analysis		
	Input Field		
Continuous	Wavelength 649.82 nm		
• 8 levels	Constant Input Field		
• 4 levels	Arbitrary Input Field Set Show		
	Transmission		
	Sampling Points 964 × 964		
) `	Sampling Distance 1.9 µm × 1.9 µm		
	Type of Continuous Phase-Only V		
2D Region (Continuous)	Number of 4 Quantization Levels		
	Output Field Requirements		
	Desired Output Field Set Show		
	Optimization Region Set Show		
	Sample Optimization Region from Desired Output Field		
-2 -1 0 1 2 X [m]			

Visual IFTA Design Evaluations (Amplitudes)

- The adjacent figures show the diffraction orders for the different design modes.
- Each pixel represents one diffraction order.
- Each design could be further optimized. For this comparison, however, all results were generated with the original IFTA default settings.
- For this application, we will stick with the 4-level element type, which should be easier and cheaper to manufacture.
- The trapezoidal area is used as the optimization area, which also ensures improved contrast for the 4-level element.

Results from Optimized 4-level Phase Transmission Function

By using the IFTA's tuning options, the 4-level phase design could be optimized significantly.

75.6

2.5

~ .

1.5

0.5

0 -

Y [m] 1

For more info follow this link into the appendix.

Radiometric Data (Irradiance)

Irradiance [mW/m²]

LIGHTTRANS

-0.5

0

X [m]

0.5

1.5 2

54: Irradiance (4 levels, optimization region = trapeze) OPTIMIZED resul

-2 -1.5 -1

false color (reverse rainbow)

2.5

N

1.5

0.5

0

۲ [m]

real color (emulated eye perception)

Final System with Aperture Blocking the Stray Light

title	Design & Analysis of System with Diffractive Light Diffuser Generating the LightTrans Logo
document code	DOE.0003
document version	3.0
required packages	Diffractive Optics
software version	2023.2 (2.30)
category	Application Use Case
further reading	

Appendix

Preparation of Distorted Design Pattern

System Adjustments for Test Simulations

1 Genera Profile	Gaussian W	For testing different in zes we increased the ave Aperture	Deam Proture. Diffuser Camera Detector 2 600 Z: 15 m ϑ : 57.8° (n' -90° Camera Detector B Function We kept the Pixelation Factor at 1×1, for this test	
Edit Camera Detect	or		there won't be a relevant sinc modulation.	
Coordinate Systems Position / Orientation	Fourier Transforms Sampling Grid Type of Fourier Transform Source to Detecto Forward FFT Image: Compare the second	ded Data Sampling Gridless Data Component to Detector	3 4 x-axis rotation +57.8° Profile Editor (Modeling Profile: General) Profile Editor (Modeling Profile: General) Spectral Parameter Overview Position & Size Power Management Spectral Parameters Type of Power Spectrum Source Power Management Source Modeling Power	5 20 mW
Detector Parameters	Inverse PFT		1. General Profile simulation engine is used.	
Free Space Propagation	Automatic PFT Selection Accuracy Level 0 • Resulting Pointwise Transformation Index (PTI) Threshold 1 Free Space tropagation Enforce PFT Beyond 10000 ² Sampling Values? Yes • No		2. For diffractive consideration, integral forward Fourier transform are selected.	ns
PFI for Bijective Mapping Only?			3. The detector is tilted according to the desired orientation.	

4. A definite source power was set for comparable results.

Optimizing 4-level Phase Transmission Function

75.6

2.5

1.5

0.5

0 -

Y [m] 1

The design was optimized at the expense of uniformity, but this is negligible, as can be seen from the results below and explained on the next slide.

Radiometric Data (Irradiance)

Irradiance [mW/m²]

LIGHTTRANS

-0.5

0

X [m]

0.5

1.5 2

real color (emulated eye perception)

54: Irradiance (4 levels, optimization region = trapeze) OPTIMIZED result

-2 -1.5 -1

false color (reverse rainbow)

2.5

N

1.5

0.5

0

۲ [m]

Illustration of Speckle Differences for Different Uniformity Errors

camera detector result

(reverse rainbow)

- For the diffractive diffuser elements, the uniformity error is typically not that important. The figures opposite show the simulation results of the IFTA and speckled systems, which illustrate that the less uniform working arrangements do not produce a significantly different speckle pattern.
- The actual resulting intensity impression is represented by values between the theoretical minimum and maximum, which results from the ideal destructive and ideal constructive interference of all overlapping beams involved (with random phase values). The gray figure shows the overlap of a (red) target point with its neighboring points.

Of course, with different quantization settings in the design, leading to the different uniformity errors, the results will vary. But because of the same starting point (initial transmission) in the IFTA's process, the resulting speckle shapes are still nicely comaprable.

The circles correspond to the 1/e² diameter.

So, this comparison gives a representative impression of possible speckle phenomena with different uniformity errors.

from continuous design (opt.reg. = logo)uniformity error = 0%

from 4-level design

(opt.reg. = trapeze)

from optimized 4-level design (opt.reg. = trapeze) uniformity error = 45.7%

