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Systems are composed of a 
continuously expanding variety of 
components, such as lenses, freeform 
surfaces, Fresnel lenses, pancake lenses, 
GRIN lenses, metalenses, mirrors, gratings, 
diffractive optical elements (DOEs), crystals, 
apertures, prisms, cubes, fibers, scatterers, 
diffusers, micro lens arrays, and spatial light 
modulators (SLMs).

The simulation must be appropriate for a multiscale system configuration.
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Systems are composed of a 
continuously expanding variety of 
components, such as lenses, freeform 
surfaces, Fresnel lenses, pancake lenses, 
GRIN lenses, metalenses, mirrors, gratings, 
diffractive optical elements (DOEs), crystals, 
apertures, prisms, cubes, fibers, scatterers, 
diffusers, micro lens arrays, and spatial light 
modulators (SLMs).

The simulation must be appropriate for a multiscale system configuration.

The simulation should generate all 
required detector outputs, such as 
aberrations, point spread function (PSF), 
modulation transfer function (MTF), beam 
characteristics, radiometry, photometry, 
colorimetry, and diagnostics for ultrashort 
pulses.
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Simulations should aim to achieve 
the necessary level of accuracy 
while also being computationally 
efficient.

Control of accuracy-speed balance
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Optical 
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Interoperability? 
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Physical
Optics

Geometrical
Optics

Interoperable Simulation Requires Generalized Geometrical Optics 

Not interoperable
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Physical Optics

Not interoperable
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“According to traditional terminology, one
understands by geometrical optics this
approximate picture of energy
propagation, using the concept of rays
and wave-fronts. In other words
polarization properties are excluded. The
reason for this restriction is undoubtedly
due to the fact that the simple laws of
geometrical optics concerning rays and
wave-fronts were known from experiments
long before the electromagnetic theory of
light was established. It is, however,
possible, and from our point of view
quite natural, to extend the meaning of
geometrical optics to embrace also
certain geometrical laws relating to the
propagation of the 'amplitude vectors'
E and H.”page 125

Geometrical Optics for Electromagnetic Fields
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We need to identify that part 
of physical optics, which deals 
with the “geometrical laws 
relating to the propagation 
of the 'amplitude vectors' E 
and H.”

Citation from page 125

We follow Max Born’s 
and Emil Wolf’s advice!

Physical Optics
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Geometrical Optics for Electromagnetic Fields
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Physical Optics

Modeling of optical effects, including, 
e.g., aberrations, energy redistribution, 
diffraction, scattering, interference, 
speckles, polarization, coherence, and 
spatiotemporal evolution. 
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Physical Optics

Modeling of optical effects, including, 
e.g., aberrations, energy redistribution, 
diffraction, scattering, interference, 
speckles, polarization, coherence, and 
spatiotemporal evolution. 



Geometrical Optics for Electromagnetic Fields
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Physical Optics
Enables the effective control of the 
extent of diffraction effects taken 
into account in simulations using 

physical optics.
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Scenario: Lens System Modeling with Ghost Signal
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Interference of two modes by 
internal reflection. 
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z axis

Theory remains valid for 
propagation between 

tilted planes. 

Given as output 
from source or 

component model

Propagated to 
next component or 

detector
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Physical Optics

We need to identify that part of 
physical optics, which deals with the 
“geometrical laws relating to the 
propagation of the 'amplitude 
vectors' E and H.” Citation

Page 125 
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When do fields 
propagate according 
to geometrical laws?
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z axis

In what situations does the 
propagation of light through 
free space closely resemble 
a point-to-point mapping?

Propagation occurs in a 
manner that is 

approximately pointwise.
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Via convolution 
mathematically 

equivalent to Rayleigh-
Sommerfeld integral
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Geometrical Optics for Electromagnetic Fields
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When does free-space propagation 
approximately reduce to a pointwise mapping?

When does the Fourier transform behave in a 
pointwise manner? 

Physical Optics

We need to identify that part of 
physical optics, which deals with the 
“geometrical laws relating to the 
propagation of the 'amplitude 
vectors' E and H.” Citation

Page 125 
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z axis

Pointwise relationship 
between both domains!
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Example: Illumination of Slide with Spherical Wave 

VirtualLab Fusion Software @ www.lighttrans.com

When does free-space propagation 
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When does the Fourier transform behave in a 
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Both Fourier transforms 
behave pointwise: 

no diffraction
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Pointwise Fourier Transform (PFT) Algorithm

If Fourier transform (FT) behaves 
approximately pointwise,

Pointwise Fourier Transform (PFT) algorithm 
enables very fast evaluation of FT. 

x domain k domain

Pointwise relationship 
between both domains!
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Geometric and Diffractive Field Zone

Geometric Field Zone: Fourier transform 
(FT) behaves approximately pointwise. 

Pointwise Fourier Transform (PFT) algorithm 
enables very fast evaluation of FT. 

Pointwise Transformation 
Index (PTI) used to 
specify threshold. 
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Pointwise Behavior in Presence of Aberrations 
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“+” coma x
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Results of Fourier Transform

deviation of PFT 
from FFT 
algorithms ~ 0.1%
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Pointwise Approximation of Fourier Transform
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Example: propagated Gaussian Laguerre beam 
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+

Wavefront Phase 
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Exponential function 
must not be sampled!

Spline interpolation 
of wavefront phase 

is suitable. 

Spline interpolation 
of wavefront phase 

is suitable. 
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Nyquist sampling

Nyquist sampling

The pointwise Fourier transform 
algorithm requires incorporating 
both gridded and gridless 
sampling techniques.

Spline interpolation 
of wavefront phase.

Spline interpolation 
of wavefront phase.
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Gouy Phase Shift
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Analysis of Coordinate Mapping
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Given lateral position 
in input plane. 

Output position 
follows from physical 
optics propagation!
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Pointwise Approximation of Fourier Transform
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Seamless inclusion of diffraction by replacing one or both PFT by FT!
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Geometrical Optics for Electromagnetic Fields
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Physical Optics
Enables the seamless inclusion of 
diffraction effects within a physical 

optics simulation framework.

Seamless control by 
manual or automatic 
selection of Fourier 
transform algorithms!  
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Interferometer Modeling: Automatic Selection of FT Algorithms
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