

Simulation of Multilayer Birefringent Reflective Polarizer with VirtualLab Fusion

Abstract

Multilayer birefringent reflective polarizers have big advantages in liquid crystal display (LCD) applications. They can recycle the backlight so as to improve the optical efficiency of LCDs. In this use case, we reproduce the experiments in Li et. al. J. Display Technol. 5, 335-340 (2009) to explore the relationship between the number of alternate birefringent layers and the Bragg reflection condition in VirtualLab Fusion. Then the variation of the reflectance efficiency with different wavelengths and incident angles is further investigated.

Task Description

Modeling of the Multilayer Stack

A Stratified Media Component is used to model the multilayer stack.

Layer A: Birefringent Uniaxial Layers (BL038)

Parameters follow from Li et. al. J. Display Technol. 5, 335-340 (2009)

Layer B: Isotropic Layers (NOA81)

Parameters follow from Li et. al. J. Display Technol. 5, 335-340 (2009)

Number of Periodic Layers to Establish Bragg Condition

- When the unpolarized plane wave hits the reflective polarizer, one direction of linear polarized light will pass through while the other component will be reflected back and depolarized, then it will be reflected again for another cycle. After several cycles, more and more light will be able to pass through the polarizer and therefore the energy efficiency is enhanced.
- In order to achieve the highest possible efficiency, the aim is to fulfill the Bragg reflection condition. Therefore, a minimum number of periodic layers is required. We used a *Parameter Run* to scan the wavelength range and calculate the efficiency with 20 layers, 50 layers, and 100 layers respectively.

Number of Periodic Layers to Establish Bragg Condition

Modeling of Multi-Stack Reflective Polarizer

Expanded Bandwidth by the Multi-Stack Method

Investigation of Reflectance Efficiency with Different Incident Angle

Peek into VirtualLab Fusion

convenient parameter scanning and result comparison

Workflow in VirtualLab Fusion

- Set the plane wave light source
 - Basic Source Models [Tutorial Video]
- Set the anisotropic layer component
 - <u>Optically Anisotropic Media in VirtualLab Fusion [Use</u> Case]
- Use Parameter Run to investigate the variation of reflectance efficiency with different wavelengths and incident angles

Document Information

title	Simulation of Multilayer Birefringent Reflective Polarizer with VirtualLab Fusion
document code	CRO.0001
version	1.1
edition	VirtualLab Fusion Basic
software version	2024.1 (Build 1.132)
category	Application Use Case
further reading	 Optically Anisotropic Media in VirtualLab Fusion Conical Refraction in Biaxial Crystals Polarization Conversion in Uniaxial Crystals