

#### **Meta-Structured Phase Retarder**

#### Abstract



Quarter-wave plates – optical elements that can shift polarization states from linear to circular and vice versa – are quite versatile tools used in many different applications, from laser resonators to petrographic microscopes. In particular, diffractive waveplates are a variant of this type of element that is currently increasing in popularity. Diffractive waveplates use subwavelength periodic structures to produce the polarization shift, while maintaining high reflectance over a wide wavelength range. In this use case, we will demonstrate and analyze one such structure that has been optimized to work with a C02 laser beam.

### **Scenario**



#### CO<sub>2</sub> laser

- wavelength: 10.6 µm
- linearly polarized (45°)
- 6 different spatial models

## **Task Description**

**CO**<sub>2</sub> laser



#### Result



0

2

3

0

X [mm]

1

-2

-1

-3

input field (spherical wave, 0.0018 NA)

(Note: Polarization ellipses are calculated per pixel, but for clarity we show the average of 20x20 pixels in these illustrations.)

## **Polarization Uniformity for Different Spherical Waves**

As the grating structure was optimized for illumination from a single direction, using higher NA (and therefore a more divergent field), leads to a local deformation of the polarization ellipses.



## **Polarization Uniformity for Different Gaussian Modes**

#### The same effect can be seen for higher order Gaussian Modes, as they are, also, higher divergent fields.



#### Workflows

# **Connected Modeling Techniques: Meta-Structured Grating**



Available modeling techniques for microstructures:

| Methods                                | Preconditions                             | Accuracy  | Speed     | Comments                                                                                                                           |
|----------------------------------------|-------------------------------------------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| Functional<br>Approach                 | -                                         | low       | very high | diffraction angles acc. to grating equation; manual efficiencies                                                                   |
| Thin Element<br>Approximation<br>(TEA) | smallest features > $\sim 10\lambda$      | high      | very high | inaccurate for larger NA and thick<br>elements; x-domain                                                                           |
|                                        | smallest features < $\sim 2\lambda$       | low       | very high |                                                                                                                                    |
| Fourier Modal<br>Method (FMM)          | period < ~ $(5\lambda \times 5\lambda)$   | very high | high      | rigorous solution; fast for<br>structures and periods similar to<br>the wavelength; more demanding<br>for larger periods; k-domain |
|                                        | period > ~ $(15\lambda \times 15\lambda)$ | very high | slow      |                                                                                                                                    |

While the period might seem large at first sight it is still small in comparison to the long wavelength of the  $CO_2$  laser. Hence, the **Fourier Modal Method (FMM)** can be used to provide a rigorous solution.

# Simulation of the Structure: Stacks & Grating Component



The meta-structured grating can be included as a *Stack* into a *Grating Component* in the *General Optical Setup*\*, to combine it with the various different source models required for the example.

\*The *Grating Optical Setup*, which might at first appear to be the obvious choice for this example, restricts each simulation to a single pass of the FMM algorithm. Only the *Ideal Plane Wave* source is then available there, for this reason. Therefore, it makes sense here to work with the *General Optical Setup*.



| title             | Meta-Structured Phase Retarder                                                                                                                                      |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| document code     | GRT.0035                                                                                                                                                            |  |
| document version  | 1.0                                                                                                                                                                 |  |
| required packages | -                                                                                                                                                                   |  |
| software version  | 2024.1 (Build 1.132)                                                                                                                                                |  |
| category          | Application Use Case                                                                                                                                                |  |
| further reading   | <ul> <li><u>Grating Order Analyzer</u></li> <li><u>Parameter Variation Analyzer</u></li> <li><u>Introduction to the Parametric Optimization Document</u></li> </ul> |  |

## **Visualization of the Result: Universal Detector**



The flexible *Universal Detector* provides access to the electromagnetic field at the detector plane and can be used to calculate additional magnitudes from this information. In this particular case we want to calculate the local polarization ellipses on the x, y plane.

